吉祥访新闻中心吉祥访官网 News
效果炸裂!OpenAI首个视频生成模型发布1分钟流畅高清网友:整个行业RIP
完美继承DALL·E 3的画质和遵循指令能力,能生成长达1分钟的高清视频。 有紧跟舞龙队伍抬头好奇官网的儿童,还有不少人掏出手机边跟边拍,海量人物角色各有各的行为。 OpenAI表示,正在教AI理解和模拟运动中的物理世界,目标是训练模型来帮助人们解决需要现实世界交互的问题 目前Sora已经能生成具有多个角色、包含特定运动的复杂场景,不仅能理解用户在提示中提出的要求,还了解这些物体在物理世界中的存在方式。 比如一大群纸飞机在树林中飞过,Sora知道碰撞后会发生什么,并表现其中的光影变化。 Sora还可以在单个视频中创建多个镜头,并依靠对语言的深入理解准确地解释提示词,保留角色和视觉风格。 美丽、白雪皑皑的东京熙熙攘攘。镜头穿过熙熙攘攘的城市街道,跟随几个人享受美丽的雪天并在附近的摊位购物。绚丽的樱花花瓣随着雪花随风飘扬。 对于Sora当前存在的弱点,OpenAI也不避讳,指出它可能难以准确模拟复杂场景的物理原理,并且可能无法理解因果关系。 例如“五只灰狼幼崽在一条偏僻的碎石路上互相嬉戏、追逐”,狼的数量会变化,一些凭空出现或消失。 该模型还可能混淆提示的空间细节,例如混淆左右,并且可能难以精确描述随着时间推移发生的事件,例如遵循特定的相机轨迹。 Sora是一种扩散模型,从噪声开始,能够一次生成整个视频或扩展视频的长度, 关键之处在于一次生成多帧的预测,确保画面主体即使暂时离开视野也能保持不变。 与GPT模型类似,Sora使用了Transformer架构,有很强的扩展性。 在数据方面,OpenAI将视频和图像表示为patch,类似于GPT中的token。 通过这种统一的数据表示方式,可以在比以前更广泛的视觉数据上训练模型,涵盖不同的持续时间、分辨率和纵横比。 Sora建立在过去对DALL·E和GPT模型的研究之上。它使用DALL·E 3的重述提示词技术,为视觉训练数据生成高度描述性的标注,因此能够更忠实地遵循用户的文本指令。 除了能够仅根据文本指令生成视频之外,该模型还能够获取现有的静态图像并从中生成视频,准确地让图像内容动起来并关注小细节。 该模型还可以获取现有视频并对其进行扩展或填充缺失的帧,请参阅技术论文了解更多信息(晚些时候发布)。 Sora 是能够理解和模拟现实世界的模型的基础,OpenAI相信这一功能将成为实现AGI的重要里程碑。 目前已有一些视觉艺术家、设计师和电影制作人(以及OpenAI员工)获得了Sora访问权限。